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Abstract. This paper introduces semantic mutation testing (SMT) into multi-
agent systems. SMT is a test assessment technique that makes changes to the in-
terpretation of a program and then examines whether a given test set has the 
ability to detect each change to the original interpretation. These changes repre-
sent possible misunderstandings of how the program is interpreted. SMT can al-
so be used to assess robustness to and reliability of semantic changes. This pa-
per applies SMT to three rule-based agent programming languages, namely Ja-
son, GOAL and 2APL, provides several contexts in which SMT for these lan-
guages is useful, and proposes three sets of semantic mutation operators (i.e., 
rules to make semantic changes) for these languages respectively, and a sys-
tematic approach to derivation of semantic mutation operators for rule-based 
agent languages. This paper then shows, through preliminary evaluation of our 
semantic mutation operators for Jason, that SMT has some potential to assess 
tests, robustness to and reliability of semantic changes. 

Keywords: Semantic Mutation Testing, Agent Programming Languages, Cog-
nitive Agents 

1! Introduction 

Testing multi-agent systems (MASs) is difficult because MASs may have some prop-
erties such as autonomy and non-determinism, and they may be based on models such 
as BDI which are quite different to ordinary imperative programming. There are many 
test techniques for MASs, most of which attempt to address these difficulties by 
adapting existing test techniques to the properties and models of MASs [9, 15]. For 
instance, SUnit is a unit-testing framework for MASs that extends JUnit [19]. 

Some test techniques for MASs introduce traditional mutation testing, which is a 
powerful technique for assessing the adequacy of test sets. In a nutshell, traditional 
mutation testing makes small changes to a program and then examines whether a 
given test set has the ability to detect each change to the original program. These 
changes represent potential small slips. Work on traditional mutation testing for 
MASs includes [1, 10, 16–18]. 

In this paper, we apply an alternative approach to mutation testing, namely seman-
tic mutation testing (SMT) [5], to MASs. Rather than changing the program, SMT 
changes the semantics of the language in which the program is written. In other 
words, it makes changes to the interpretation of the program. These changes represent 



possible misunderstandings of how the program is interpreted. Therefore, SMT as-
sesses a test set by examining whether it has the ability to detect each change to the 
original interpretation of the program. 

SMT can be used not only to assess tests, but also to assess robustness to and relia-
bility of semantic changes: Given a program, if a change to its interpretation cannot 
be detected by a trusted test set, the program is considered to be robust to this change, 
in other words, this change is considered to be reliable for the program. 

This paper makes several contributions. First, it applies SMT to three rule-based 
agent programming languages, namely Jason, GOAL and 2APL. Second, it provides 
several contexts (scenarios) in which SMT for these languages is useful. Third, it 
proposes three sets of semantic mutation operators (i.e., rules to make semantic 
changes) for these languages respectively, and a systematic approach to derivation of 
semantic mutation operators for rule-based agent languages. Finally, it presents a 
preliminary evaluation of the semantic mutation operators for Jason, which shows 
some potential of SMT to assess tests, robustness to and reliability of semantic chang-
es. 

The remainder of this paper is structured as follows: Section 2 describes two types 
of mutation testing, namely traditional mutation testing and semantic mutation testing. 
Section 3 describes SMT for Jason, GOAL and 2APL by showing several contexts in 
which it is useful and the source of semantic changes required to apply SMT in each 
context. Section 4 proposes sets of semantic mutation operators for these languages 
and an approach to derivation of semantic mutation operators for rule-based agent 
languages. Section 5 evaluates the semantic mutation operators for Jason. Section 6 
compares our approach to related work, summarizes our work and suggests where this 
work could go in the future. 

2! Mutation Testing 

2.1! Traditional Mutation Testing 

Traditional mutation testing is a test assessment technique that generates modified 
versions of a program and then examines whether a given test set has the ability to 
detect the modifications to the original program. Each modified program is called a 
mutant, which represents a potential small slip. Mutant generation is guided by a set 
of rules called mutation operators. For instance, Figure 1(a) shows a piece of a pro-
gram and Figure 1(b) – 1(f) show five mutants generated as the result of the applica-
tion of a single mutation operator called Relational Operator Replacement, which 
replaces one of the relational operators (<, ≤, >, ≥, =, ≠) by one of the others.  

After mutant generation, the original program and each mutant are executed 
against all tests in the test set. For a mutant, if its resultant behaviour differs from the 
behaviour of the original program on some test, the mutant will be marked as killed, 
which indicates that the corresponding modification can be detected by the test set. 
Therefore, the fault detection ability of the test set can be assessed by the mutant kill 
rate – the ratio of the killed mutants to all generated mutants: the higher the ratio is, 
the more adequate the test set is. In the example shown in Figure 1, a test set consist-



ing of a single test in which the input is x=3, y=5 cannot kill the mutants shown in 
Figure 1(b) and 1(f) because on that test these two live mutants result in the same 
behaviour as the original program (i.e., return a). Therefore, the mutant kill rate is 
3/5. According to this result we can enhance the test set by adding a test in which the 
input is x=4, y=4 and another test in which the input is x=4, y=3 in order to kill these 
two live mutants respectively and get a higher mutant kill rate (the highest kill rate is 
1, as this example shows).  

 
Fig. 1. An example of traditional mutation testing 

Many studies provide evidence that traditional mutation testing is a very rigorous 
test assessment technique, so it is often used to assess other test techniques [2, 14]. 
However, the mutation operators used to guide mutant generation may lead to a large 
number of mutants because a single mutation operator has to be applied to each rele-
vant point in the program and a single mutant only contains a modification to a single 
relevant point (as shown in Figure 1). This makes comparing the behaviour of the 
original program with that of each mutant on each test is computationally expensive. 

Another problem is that traditional mutation testing unpredictably produces 
equivalent mutants – alternatives to the original program that are not representative of 
faulty versions, in that their behaviour is no different from the original in any way that 
matters for the correctness of the program. Thus, no reasonable test set can detect the 
modifications they contain. Equivalent mutants must therefore be excluded from test 
assessment (i.e., the calculation of the mutant kill rate). The exclusion of equivalent 
mutants requires much manual work although this process may be partially automat-
ed. 

2.2! Semantic Mutation Testing 

Clark et al. [5] propose semantic mutation testing (SMT) and extend the definition of 
mutation testing as follows: suppose N represents a program and L represents the 
semantics of the language in which the program is written (so L determines how N is 



interpreted), the pair (N, L) determines the program’s behaviour. Traditional mutation 
testing generates modified versions of the program namely N ! (N1, N2, …, Nk) 
while SMT generates different interpretations of the same program namely L ! (L1, 
L2, …, Lk). For SMT, L1, L2, …, Lk represent semantic mutants, their generation is 
guided by a set of rules called semantic mutation operators. For instance, Figure 2 
shows a piece of a program, a semantic mutant (i.e., a different interpretation of this 
program) is generated by the application of a single semantic mutation operator that 
causes the if keyword to be used for mutual exclusion (i.e., when an if is directly fol-
lowed by another if, the second if statement is interpreted the same as an else-if state-
ment). 

 

Fig. 2. An example of semantic mutation testing 

SMT assesses a test set in a similar way as traditional mutation testing – comparing 
the behaviour under each semantic mutant with that under the original interpretation, 
in order to detect the killed mutants. In the example shown in Figure 2, a test set con-
sisting of a single test in which the input is x=2 cannot kill the semantic mutant be-
cause on that test the mutant results in the same behavior as the original interpretation 
(i.e., only do A). Therefore, the mutant kill rate is 0/1 = 0. We can enhance this test set 
by adding another test in which the input is x=4 in order to kill the live mutant. 

Compared with traditional mutation testing, SMT aims to simulate a different class 
of faults, namely possible misunderstandings of how the program is interpreted. Alt-
hough many semantic misunderstandings can also be simulated by mutation of the 
program, a single semantic change may require multiple changes to the program ra-
ther than a single, small change made by traditional mutation testing. In addition, 
some semantic misunderstandings may lead to complex faults that simple program 
changes are hard to represent, and these complex faults may be harder to detect than 
small slips, e.g., [5] shows that SMT has potential to capture some faults that cannot 
be captured by traditional mutation testing. 

SMT has another difference to traditional mutation testing: it generates far fewer 
mutants because a single semantic mutation operator only leads to a single semantic 
mutant1, namely a different interpretation of the same program (as shown in Figure 2), 
while a single traditional mutation operator may lead to many mutants each of which 
contains a modification to a single relevant point in the program (as shown in Figure 
1). This makes SMT much less computationally costly. 

                                                             
1  This rule can be relaxed, namely mutating the semantics of only parts of the program instead 

of mutating the semantics of the whole program. This is useful, e.g., when the program is 
developed by several people. 



SMT can be used not only to assess tests, but also to assess robustness to and relia-
bility of semantic changes. Given a semantic mutant, if it cannot be killed by a trusted 
test set2, it will be considered to be “equivalent”3, which indicates that the program is 
robust to the corresponding semantic change or the semantic change is reliable for the 
program, otherwise the program may need to be improved to resist this change, or this 
change has to be discarded. In the example shown in Figure 2, if the program is re-
quired to be robust to the semantic change, it can be modified to ensure that at most 
one branch is executed in any case. 

We know that SMT makes semantic changes for assessing tests, robustness to and 
reliability of semantic changes. For a particular language, which semantic changes 
should be made by SMT are context-dependent. For instance, to assess tests for a 
program written by a novice programmer, semantic changes to be made can be de-
rived from common novices’ misunderstandings of the semantics. To assess the port-
ability of a program between different versions of the interpreter, semantic changes to 
be made can be derived from semantic differences between these versions. 

3! Semantic Mutation Testing for Jason, GOAL and 2APL 

We investigate semantic mutation testing for MASs by applying it to three rule-based 
programming languages for cognitive agents, namely Jason, GOAL and 2APL. These 
languages have generally similar semantics – an agent deliberates in a cyclic process 
in which it selects and executes rules according to and affecting its mental states. 
They also have similar constructs to implement such agents such as beliefs, goals and 
rules. The details of these languages can be found in [4, 6, 8] and are not provided 
here. 

From Section 2.2 we know that for a particular language, the semantic changes that 
can most usefully be made by SMT is context-dependent. In the remainder of this 
section we provide several contexts in which SMT for the chosen agent languages is 
useful – use of a new language, evolution of languages, common misunderstandings, 
ambiguity of informal semantics and customization of the interpreter. We also show 
the source of semantic changes required to apply SMT in each context. 

3.1! Use of a new language 

When a programmer starts to write a program in a new (to him or her) language, he or 
she may have misunderstandings that come from the semantic differences between the 
new language and the old one(s) he or she has ever used. Therefore, in order for SMT 

                                                             
2  A trusted test set is the one that is considered to be “good enough” for the requirement. It 

doesn’t need to be the full test set that is usually impractical; instead it can choose not to 
cover some aspects or to tolerate some errors. 

3  Here the term “equivalent” is different to the one used in the context of test assessment, in 
which a mutant is equivalent only if there exist no tests that can kill the mutant. In the con-
text of robustness/reliability assessment, a mutant is equivalent if only the trusted test set 
cannot kill it. 



to simulate such misunderstandings, we should first find out their source, namely the 
semantic differences, by comparison between the new and the old languages. We use 
Jason, GOAL and 2APL as an example: a programmer who has ever used one of the-
se languages may start to use one of the others. Since these languages each have large 
semantic size and distinctive features, we use the following strategies to guide the 
derivation of the semantic differences between them. 

•! Dividing the semantics of each of these languages into five aspects, as shown in 
Table 1. We do this because first of all, it provides a focus on examining four as-
pects of the semantics, namely deliberation step order, rule selection, rule execu-
tion, and mental state query and update, all of which are important and common to 
rule-based agent languages, while including other aspects that will be generally ex-
amined in order for completeness. Second, it is reasonable that common aspects of 
the semantics are more likely to cause misunderstandings than distinctive aspects 
in the context of using a new language, because distinctive aspects are usually sup-
ported by distinctive constructs that a programmer would normally take time to 
learn. 

•! Focusing on semantic differences between similar constructs. As [5] suggests, such 
differences easily cause misunderstandings because when writing a program in a 
new language a programmer may copy the same or similar old constructs without 
careful examination of their semantics given by the new language. 

•! Examining both formal and informal semantics of these languages. We start with 
examining the formal semantics because they can be directly compared. We also 
verify those that are informally defined through coding and reviewing the inter-
preter source code. 

•! Focusing on the default interpreter configuration. The interpreters of these lan-
guages are customizable, for instance, the Jason agent architecture can be custom-
ized by inheritance of the Java class that implements the default agent architecture; 
the GOAL rule selection order can be customized in the GOAL agent description. 
We think the default interpreter configuration is more likely to cause misunder-
standings in the context of using a new language because if a programmer custom-
izes an element it suggests he or she is familiar with its semantics.  

Table 1.  The aspects of the semantics of Jason, GOAL and 2APL (those marked with an aster-
isk are the ones we focus on) 

ID Aspect Description 

1 Deliberation step 
order* 

Each deliberation cycle consists of a sequence of steps, e.g., 
rule selection ! rule execution is a two-step sub-sequence. 

2 Rule selection* Rule selection is an important deliberation step in which one 
or several rules are chosen to be new execution candidates. 

3 Rule execution* Rule execution is an important deliberation step in which one 
or several execution candidates are chosen to execute. 

4 Mental state query 
and update* 

Mental states (i.e., beliefs and goals) can be queried in some 
deliberation steps such as rule selection and updated by exe-
cution of rules. 

5 Other Other aspects of the semantics not listed above. 



 
Table 2 shows the semantic differences we found between Jason, GOAL and 

2APL. These form the source of semantic changes required to apply SMT in the con-
text of starting to use one of Jason, GOAL and 2APL from one of the others. 

Table 2.  Semantic differences between Jason, GOAL and 2APL 

ID Source Jason GOAL 2APL 

1 The order of 
rule selection 
and rule 
execution 

select a rule ! execute 
a rule 

(select and execute event 
rules ! select and 
execute an action rule) x 
Number_of_Modules 

select action rules ! 
execute rules ! select 
an external event rule 
! select an internal 
event rules ! select a 
message event rule 

2 Rule  
selection 

•! applicable 

•! linear 

•! enabled 

•! linear (action rules) 
and linearall (event 
rules) 

•! applicable 

•! linear (event rules) 
and linearall (action 
rules) 

3 Rule  
execution 

•! one rule/cycle 

•! one action/rule 

•! one rule/cycle (ac-
tion rules) and all 
rules/cycle (event 
rules) 

•! all actions/rule 

•! all rules/cycle 

•! one action/rule 

4 Belief query linear random  linear 
5 Belief  

addition 
start end end 

6 Goal query E ! I; linear random linear 
7 Goal  

addition 
end of E end start or end 

8 Goal  
deletion 

delete the event and 
intention that relates to 
the goal φ 

delete all super-goals of 
the goal φ 

delete only the goal φ, 
all sub-goals of φ or all 
super-goals of φ 

9 Goal type procedural declarative declarative 
10 Goal  

commitment 
strategy 

no blind blind 

  
Difference 1 comes from the order of two important deliberation steps, namely rule 

selection and rule execution. A Jason agent first selects a rule to be a new execution 
candidate and then chooses to execute an execution candidate. A GOAL agent pro-
cesses its modules one by one, in each module it first selects and executes event rules 
and then selects and executes an action rule (both event and action rules are defined in 
the module being processed). A 2APL agent first selects action rules to be new execu-
tion candidates, and then executes all execution candidates, next selects an external 
event rule, an internal event rule and a message event rule to be new execution candi-
dates. 

Difference 2 comes from the rule selection deliberation step. Jason, GOAL and 
2APL differ in two aspects of this step, namely the rule selection condition and the 



default rule selection order. For the rule selection condition, a Jason or 2APL rule can 
be selected to be a new execution candidate if both its trigger condition and guard 
condition get satisfied (“applicable”), while a GOAL rule can be selected if it is appli-
cable and the pre-condition of its first action gets satisfied (“enabled”). For the default 
rule selection order, Jason rules are selected in linear order (i.e., rules are examined in 
the order they appear in the agent description, and the first applicable rule is selected), 
GOAL action rules are selected in linear order while GOAL event rules are selected 
in “linearall” order (i.e., rules are examined in the order they appear in the agent de-
scription, and all enabled rules are selected), 2APL action rules are selected in “lin-
earall” order while 2APL event rules of each type (external, internal, message) are 
selected in linear order. 

Difference 3 comes from the rule execution deliberation step. In this step a Jason 
agent chooses a single execution candidate and then executes a single action in this 
candidate, a GOAL agent executes all actions in each selected event rule and each 
selected action rule4, a 2APL agent executes a single action in each execution candi-
date. 

Difference 4 comes from the belief query. In a Jason or 2APL agent, beliefs are 
queried in linear order (i.e., beliefs are examined in the order they are stored in the 
belief base, and the first matched belief is returned). In a GOAL agent, beliefs are 
queried in random order (i.e., beliefs are randomly accessed, and the first matched 
belief is returned). 

Difference 5 comes from the belief addition. In a Jason agent, a new belief is added 
to the start of the belief base. In a GOAL or 2APL agent a new belief is added to the 
end of the belief base. 

Difference 6 comes from the goal query. In a Jason agent, since goals exist in re-
lated events and intentions, the agent queries a goal by first examining its event base 
then its intention set following linear query order. In a GOAL agent, goals are queried 
in random order. In a 2APL agent, goals are queried in linear order. 

Difference 7 comes from the goal addition. In a Jason or GOAL agent, a new goal 
is added to the end of the event or goal base. In a 2APL agent, a new goal is added to 
the start or the end of the goal base according to the relevant agent description (i.e., 
adopta or adoptz). 

Difference 8 comes from the goal deletion. Given a goal φ to be deleted, a Jason 
agent deletes the event and intention that relates to φ, a GOAL agent deletes all goals 
that have φ as a logical sub-goal, a 2APL agent deletes only φ, all goals that are a 
logical sub-goal of φ, or all goals that have φ as a logical sub-goal according to the 
relevant agent description (i.e., dropgoal, dropsubgoal or dropsupergoal). 

Difference 9 comes from the goal type. Jason adopts procedural goals – goals that 
only serve as triggers of procedures although it supports declarative goal patterns. 
GOAL and 2APL adopt declarative goals – goals that also represent states of affairs 
to achieve. 

                                                             
4 Unlike Jason and 2APL, a GOAL agent has no intention set or similar structure, so a GOAL 

rule is immediately attempted to execute to completion once selected. 



Difference 10 comes from the goal commitment strategy. Jason doesn’t adopt any 
goal commitment strategy (i.e., a goal is just dropped once its associated intention is 
removed as the result of completion or failure) although it supports various commit-
ment strategy patterns. GOAL and 2APL adopt blind goal commitment strategy, 
which requires a goal is pursued until it is achieved or declaratively dropped.  

3.2! Evolution of Languages 

When a programmer moves a program from a language to its successor (either a dif-
ferent language or a newer version of the same language), he or she may have misun-
derstandings that come from the semantic evolution, or may want to examine whether 
a program is robust to the semantic evolution or whether the semantic evolution is 
reliable. To derive semantic changes required to apply SMT in these cases, we should 
first find out their source, namely the semantic differences between the language and 
its successor. We take 2APL and its predecessor 3APL [7], and different versions of 
Jason as examples: Table 3 shows some semantic differences between 2APL and 
3APL; Table 4 shows some semantic differences between different versions of Jason, 
which are derived from the Jason changelog [11]. We explain these differences as 
follows. 

Semantic differences between 2APL and 3APL 

Difference 1 comes from the PR-rules. In 2APL, the abbreviation “PR” means 
“plan repair”, a PR-rule (i.e. an internal event rule) is selected if a relevant plan fails. 
In 3APL, “PR” means “plan revision”, a PR-rule is selected if it matches some plan. 

Difference 2 comes from the order of rule selection and rule execution deliberation 
steps. The order adopted by a 2APL agent has been described in Section 3.1. In con-
trast, a 3APL agent selects an action rule then a PR-rule to be new execution candi-
dates, then chooses to execute an execution candidate. 

Difference 3 comes from the action rule selection order. As described in Section 
3.1, 2APL action rules are selected in “linearall” order. In contrast, 3APL action rules 
are selected in linear order. 

Difference 4 comes from the rule execution deliberation step. As described in Sec-
tion 3.1, a 2APL agent executes all execution candidates in a deliberation cycle. In 
contrast, a 3APL agent chooses to execute a single execution candidate. 

Table 3.  Some semantics differences between 2APL and 3APL 

ID Source 2APL 3APL 
1 PR-rules plan repair plan revision 

2 The order of rule selection 
and rule execution see Table 2 select an action rule ! select a 

PR-rule ! execute a rule 
3 Action rule selection linearall linear 
4 Rule execution all rules/cycle one rule/cycle 



Semantic differences between different versions of Jason 

Difference 1 comes from the belief deletion action. Since Jason v0.95 the belief de-
letion action -b deletes b if b is a mental note (i.e. b has the annotation source(self)), 
while this action deletes b wherever it originates from before that version of Jason. 

Difference 2 comes from the drop desire action. Since Jason v0.96 the drop desire 
action .drop_desire(d) removes the event and intention that is related to d, while this 
action removes only the related event before that version of Jason. 

Table 4.  Some semantic differences between different versions of Jason 

ID Source Before some Version Since that Version 

1 Belief deletion action  -b deletes b wherever it originates 
from. 

-b deletes b if b has the annota-
tion source(self). 

2 Drop desire action Remove only the related event. Remove the related event and 
intention. 

3.3! Common Misunderstandings 

A programmer may have semantic misunderstandings that are common to a particular 
group of people he or she belongs to. Such misunderstandings can be identified by 
analysis of these people’s common mistakes or faults. We take GOAL as an example: 
Table 5 shows some possible misunderstandings of the GOAL’s semantics, which are 
derived from some common faults made by GOAL novice programmers [20]. We 
explain these misunderstandings as follows. 

Possible misunderstanding 1 comes from the fault of the wrong rule order. If a 
programmer makes this fault in the GOAL agent description, he or she may have the 
misunderstanding that rules are selected in another available order5 by default, e.g., 
action rules are selected in “linearall” order rather than linear order. 

Possible misunderstanding 2 comes from the fault of a single rule including two 
user-defined actions. If a programmer makes this fault, he or she may have the mis-
understanding that this is allowed like other agent languages. 

Possible misunderstanding 3 comes from the fault of using “if then” instead of 
“forall do”. If a programmer makes this fault, he or she may have the misunderstand-
ing that “if then” is interpreted the same as “forall do”. 

Table 5.  Some possible novice programmers' misunderstandings of GOAL 

ID Fault Possible Misunderstanding 
1 Wrong rule order By default rules are selected in another available order. 

2 A single rule including two 
user-defined actions A rule can have more than one user-defined action. 

3 Using “if then” instead of 
“forall do” “if then” is interpreted the same as “forall do”. 

                                                             
5  GOAL supports four available rule evaluation orders: linear, linearall, random and ran-

domall. 



3.4! Ambiguity of Informal Semantics 

A programmer may have misunderstandings of the semantics that are imprecisely or 
informally defined. For instance, [3] gives two examples of such misunderstandings 
of Jason as shown in Table 6. We explain these misunderstandings as follows. 

Possible misunderstanding 1 comes from the goal deletion event. A goal deletion 
event (-!e or -?e) is generated if an intention that has the corresponding goal addition 
triggering event (+!e or +?e) fails. A programmer may have the misunderstanding 
that this event is generated if this intention is removed as the result of completion or 
failure. 

Possible misunderstanding 2 comes from the test action. A test action (?e) gener-
ates a test goal addition event if it fails. A programmer may have the misunderstand-
ing that a test action generates a test goal addition event if it is executed, which is 
similar to an achievement goal action (!e). 

Table 6.  Some possible misunderstanding of the Jason’s informal semantics 

ID Source Possible Misunderstanding 
1 Goal deletion event “if an intention fails” ! “if an intention is removed” 

2 Test action Generate a test goal addition event if the action fails ! Generate a 
test goal addition event if the action is executed 

3.5! Customization of the Interpreter 

The interpreters of Jason, GOAL and 2APL can be customized through modify-
ing/overriding the functions of the interpreter or choosing between the provided op-
tions that can change the interpreter behaviour. Given an agent description, a pro-
grammer may want to know whether a custom interpreter provides an alternative to 
the original interpretation of the description. (The programmer may further examine 
whether the alternative interpretation leads to better performance, e.g., higher execu-
tion efficiency.) SMT can be applied in this context to represent potential customiza-
tions of the interpreter. We take Jason as an example: Table 7 shows some Jason in-
terpreter configuration options, which are derived from the Jason changelog [11]. 

Table 7.  Some Jason interpreter configuration options 

ID Option Description 
1 Enable/disable tail recursion optimization for sub-goals. 
2 Enable/disable cache for queries in the same cycle. 

3 Choose whether the event generated by the belief revision action will be treated as internal or 
external. 

3.6! Discussion 

SMT is interesting to Jason, GOAL and 2APL in the contexts discussed above con-
sidering: 



•! These languages are declarative languages. They provide a focus on describing 
capabilities and responsibilities of an agent in terms of beliefs, goals, plans, etc., 
while encapsulating in the interpreter how an agent goes about fulfilling the re-
sponsibilities using the available capabilities. As a result, programmers are likely 
to pay insufficient attention to how an agent works, and therefore have relevant 
misunderstandings. 

•! These languages have customizable semantics. Since the semantics affects the 
agent behaviour and performance as well as the agent program, it is useful to ex-
plore different customizations of the semantics. 

4! Semantic Mutation Operators for Jason, GOAL and 2APL 

According to our derived sources of semantic changes required to apply SMT in dif-
ferent contexts, we derive three respective sets of semantic mutation operators for 
Jason, GOAL and 2APL as shown in Table 8(a) – 8(c). Due to space limitations we 
don’t explain each semantic mutation operator in details. 

It is worth noting that each operator set does not cover each context discussed in 
Section 3, e.g., the operator set for Jason has no operators that are derived from com-
mon misunderstandings of Jason. Therefore, we will improve each set when we ac-
quire more sources of potential semantic changes to the corresponding language. In 
Table 8 each operator is labeled with its context(s) from which it is derived, e.g., the 
rule selection order change (RSO) operator for Jason is labeled with UNL (use of a 
new language), which indicates that this operator is derived from and can be used in 
(but is not limited to) the context of use of a new language discussed in Section 3.1. 

Another noteworthy thing is that not every possible semantic change derived from 
Table 2 – 7 develops into a (or part of a) semantic mutation operator because some of 
them are considered to be unrealistic. Therefore, these unrealistic changes are adapted 
or simply discarded. A semantic change is considered to be unrealistic if it satisfies 
one of the following. 
•! It requires a significant change in the interpreter. We think that a programmer is 

not very likely to misunderstand the semantics a lot or to make such semantic 
change. 

•! It leads to the significantly different behaviour of each of our selected agent 
programs written in the corresponding language (i.e., 6 Jason programs, 6 
GOAL programs or 4 2APL programs). We think that this semantic change is 
very easy to detect. 

After analysis of these semantic mutation operators we find that most of them con-
cern three kinds of the interpreter behaviour, namely select, query and update6. The 
elements to be selected include deliberation steps, rules, intentions, actions, etc; those 
to be queried or updated include beliefs, goals, events, etc. We also find that most 

                                                             
6  We ever considered two more kinds of the interpreter behaviour, namely transit (between 

deliberation steps) and execute (a rule or action). However, we find that these two kinds can 
be classified as select, namely select between deliberation steps and select a rule or action to 
execute. This simplifies our classification. 



operators change certain aspects of the interpreter behaviour, i.e., order, quantity, 
position and condition7. Table 9(a) and 9(b) list the kinds of the interpreter behaviour 
and the changeable aspects respectively (other kinds and aspects not mentioned above 
are included in order for completeness). Therefore, we propose a systematic approach 
to derivation of semantic mutation operators for rule-based agent languages, namely 
application of a changeable aspect into a kind of the interpreter behaviour. In Table 8 
each semantic mutation operator is labeled with the kind of the interpreter behaviour 
it concerns and the aspect it changes, both of which are identified by their IDs shown 
in Table 9 (i.e., KID and AID respectively). 

Abbreviations for the contexts discussed in Section 3 

Use of a New Language: UNL Evolution of Languages: EL 
Common Misunderstandings: CM Ambiguity of Informal Semantics: AIS 
Customization of Interpreter: CI  

Table 8(a).  Semantic mutation operators for Jason 

ID Semantic Mutation Operator Description Context KID AID 
1 Rule selection order change (RSO) linear ! linearall UNL 1 1 
2 Intention selection order change 

(ISO) 
one intention/cycle ! all 
intentions/cycle 

UNL 1 1 

3 Intention selection order change 2 
(ISO2) 

interleaved selection of 
intentions ! non-interleaved 
selection of intentions 

UNL 1 1 

4 Belief query order change (BQO) linear ! random UNL 2 1 
5 Belief addition position change 

(BAP) 
start ! end UNL 3 3 

6 Belief revision action semantics 
change (BRAS) 

generate internal events ! 
generate external events8 

CI 3 3 

7 Belief deletion action semantics 
change (BDAS) 

-b deletes b if b has the 
annotation source(self) ! -b 
deletes b 

EL 3 4 

8 Goal addition position change 
(GAP) 

end ! start UNL 3 3 

9 Drop desire action semantics 
change (DDAS) 

remove the related event and 
intention ! remove only the 
related event 

EL 3 2 

10 Test goal action semantics change 
(TGAS) 

generate a test goal addition 
event if the action fails ! 
generate a test goal addition 
event if the action is execut-
ed 

AIS 3 4 

11 TRO enable/disable (TRO) enable/disable tail recursion 
optimization for sub-goals 

CI 3 5 

12 Query cache enable/disable (QC) enable/disable cache for 
queries in the same cycle 

CI 2 5 

                                                             
7  These changeable aspects may have overlaps, e.g., the change “select one rule ! select all 

rules” can be a change to the order or the quantity. 
8  The plan chosen for an internal event will be pushed on top of the intention from which the 

event is generated; the plan chosen for an external event will become a new intention. 



Table 8(b).  Semantic mutation operators for GOAL 

ID Semantic Mutation Operator Description Context KID AID 

1 Rule selection and execution 
order change (RSEO) 

select and execute event 
rules then an action rule ! 
select and execute an action 
rule then event rules 

UNL 1 1 

2 Rule selection condition change 
(RSC) 

enabled ! applicable UNL 1 4 

3 Rule selection order change 
(RSO) 

change between linear, 
linearall, random and ran-
domall 

UNL, 
CM 1 1 

4 Belief query order change (BQO) random ! linear UNL 2 1 

5 Belief addition position change 
(BAP) 

end ! start UNL 3 3 

6 Goal query order change (GQO) random ! linear UNL 2 1 

7 Goal addition position change 
(GAP) 

end ! start UNL 3 3 

8 Goal deletion semantics change 
(GDS) 

“delete φ’ if it is a super-
goal of φ” ! “delete φ’ if it 
is φ” or “delete φ’ if it is a 
sub-goal of φ” 

UNL 3 4 

9 The maximum number of user-
defined actions change (MNUA) 

1 ! more than 1 CM 4 2 

10 “if then” semantics change (ITS) make “if then” interpreted 
the same as “forall do” 

CM 2 2 

Table 8(c).  Semantic mutation operators for 2APL 

ID Semantic Mutation Operator Description Context KID AID 

1 Rule selection and rule execu-
tion order change (RSREO) 

change the original order “se-
lect action rules ! execute 
rules ! select event rules” to 
“select action rules ! select 
event rules ! execute rules” or 
“select event rules ! select 
action rules ! execute rules” 

UNL, 
EL 1 1 

2 Rule selection condition change 
(RSC) 

applicable ! enabled UNL 1 4 

3 Rule selection order change 
(RSO) 

change between linear and 
linearall 

UNL, 
EL 

1 1 

4 Plan selection order change 
(PSO) 

all plans/cycle ! one 
plan/cycle 

UNL, 
EL 

1 1 

5 Belief query order change 
(BQO) 

linear ! random UNL 2 1 

6 Belief addition position change 
(BAP) 

end ! start UNL 3 3 

7 Goal query order change (GQO) linear ! random UNL 2 1 

8 PR-rule selection condition 
change (PRSC) 

select a PR-rule if the relevant 
plan fails ! select a PR-rule if 
it matches some plan 

EL 1 4 



Table 9.  (a) Kinds of the interpreter behaviour  
(b) Changeable aspects of the interpreter behaviour

 
(a) 

KID Kind 

1 Select 

2 Query 

3 Update 

4 Other 

 

(b) 

AID Aspect 

1 Order 

2 Quantity 

3 Position 

4 Condition 

5 Other 

5! Evaluation of Semantic Mutation Operators for Jason

In order to assess the potential of SMT to assess tests, robustness to and reliability of 
semantic changes, we develop a semantic mutation system for Jason called smsJason. 
smsJason has three components, namely tests, semantic mutation operators, and con-
troller, which are explained as follows. 

•! tests contains the following two custom parts for a particular Jason project: 
o! A collection of tests. Each test is an array of values that can be used to instan-

tiate the parameterized agent/environment description. A random test genera-
tor is employed to generate random tests given the constraints of each param-
eter. In addition, each test will be assigned a lifetime at runtime. This lifetime 
equals to the time taken by the Jason project under the original interpretation 
to pass this test plus a specified generous tolerance value for this test9. The 
Jason project under any mutant on this test will terminate anyhow when 
reaching this lifetime, if the project does not terminate as the result of passing 
this test yet. 

o! Test pass criteria. The test pass criteria will be constantly examined at 
runtime in order to judge whether the Jason project has passed the current 
test. If the Jason project under the original interpretation is found to pass the 
current test, it will terminate and the lifetime of the test will be derived; if the 
project under any mutant is found to pass the current test before the lifetime 
of the test, it will terminate and the mutant will be marked as “live”, other-
wise it will terminate when reaching this lifetime and the mutant will be 
marked as “killed”. 

•! semantic mutation operators implements our derived semantic mutation operators 
for Jason as shown in Table 8(a). Each operator leads to a modified version of the 
Jason interpreter (v1.4.1) which is pointed by a branch in Git [12] and can there-
fore be switched to another at runtime via Git API. 

                                                             
9  The tolerance value is added because the exact time taken by the Jason project varies over a 

limited range in different runs. It is generous because the execution efficiency is not consid-
ered as part of the test pass criteria. 



•! controller implements the process of semantic mutation testing as shown in the 
following pseudo-code. JRebel [13], a powerful class reload technique, is em-
ployed to deploy each test (namely each instance of the parameterized 
agent/environment description) at runtime quickly. 

1: On each test: 
2:   Run the Jason project under the original  
     interpreter until it passes the test 
3:   Derive the lifetime of the test 
 
4: Under each generated mutant: 
5:   On each test: 
6:     Run the Jason project until it passes the test 
       or reaches the lifetime of the test 
7:     Mark the mutant as “live” or “killed” 
8:     Update the number of tests that killed the  
       mutant if the test killed the mutant 
 
9: Display the SMT result 

We apply smsJason into two Jason projects released with the Jason interpreter, 
namely Domestic Robot (DR) and Blocks World (BW). In DR, a robot constantly gets 
beer from the fridge and then serves its owner the beer until the owner exceeds a cer-
tain limit of drinking. The robot will ask the supermarket to deliver beer when the 
fridge is found empty. In BW, an agent restacks the blocks as required, by a series of 
actions of carrying or putting down a single block. We specify tests and test pass cri-
teria for DR and BW as summarized in Table 10(a) – 10(b), after which we start the 
semantic mutation testing for each project. We analyze the SMT results displayed by 
smsJason and present the final results in Table 11.  

Table 10(a). The tests and test pass criteria for the Domestic Robot 

Parameter Constraints Test Pass Criteria 
Drinking limit (Dl) Dl � [0, 16] All of the following must be satisfied. 

1.! The robot is not carrying beer; 
2.! The robot has advised the owner about 

having exceeded the drinking limit; 
3.! The robot has checked the current time as 

requested by the owner; 
4.! Dl  + 1 = Ib + Db – Rb, where Db is the 

beer delivered by the supermarket and Rb 
is the remaining beer in the fridge. 

Map size (S x S) S � [1, 16] 

Initial beer in the fridge (Ib) Ib � [0, 16] 

Initial position of the robot (Pr) Pr, Pf and Po 
take the form of 
(X, Y), where X, 
Y �[0, S - 1] 

Initial position of the fridge (Pf) 

Initial position of the owner (Po) 

Total number of tests: 160 
 
  



Table 10(b). The tests and test pass criteria for the Blocks World 

Parameter Constraints Test Pass Criteria 
Original Stacks of Blocks (OS) OS or ES is a set of lists and a partition of 

the set {“a”, “b”, “c”, “d”, “e”, “f”, “g”} 
representing all blocks; 1 ≤ |OS|, |ES| ≤ 3 

OS = ES 

Expected Stacks of Blocks (ES) 

Total number of tests: 80 

Table 11. Results of semantic mutation testing 

SMOP 
Domestic Robot Blocks World 

Percentage of Tests 
that Kill the Mutant Mutant Type Percentage of Tests 

that Kill the Mutant Mutant Type 

RSO 0 NE 0 E 
ISO 0 E 0 E 

ISO2 100% K 0 E 
BQO 0 E 0 NE 
BAP 0 E 37.5% K 

BRAS 0 N/A 0 N/A 
BDAS 0 E 0 N/A 
GAP 0 E 0 E 

DDAS 0 N/A 0 N/A 
TGAS 91.88% K 0 N/A 
TRO 0 E 0 E 
QC 0 E 0 E 

 
smsJason identifies the killed mutants (K), and we further classify those live mu-

tants. First, by static analysis of the agent program we find that some live mutants are 
inapplicable (N/A) because the program has no constructs concerning the mutated 
semantics. For instance, the BW agent program has no actions of belief revision, be-
lief deletion, drop desire and test goal, hence BRAS, BDAS, DDAS and TGAS are 
inapplicable to BW. Second, we attempt to identify equivalent mutants (E) among the 
applicable mutants by static and dynamic analysis of the agent program. For instance, 
we find that the DR or BW agent program has no constructs that cause the order of 
goal related events to matter; we also verify this through observing in Jason’s mind 
inspector the relevant changes in agents’ mental attitudes on all tests. Therefore, we 
conclude that GAP probably leads to the equivalent mutant. If we find a mutant likely 
to be not equivalent we will attempt to improve the tests or test pass criteria in order 
to kill it and classify it as non-equivalent (NE). 

5.1! Assessment of Tests 

The non-equivalent mutants (NE) indicate the weaknesses in the tests or test pass 
criteria. In order to kill such a mutant that RSO leads to, we need to capture the dif-
ferences in the resultant agent behaviour between selecting all applicable plans and 
selecting only the first applicable plan. These plans must have the same triggering 
event, the contexts that are not mutually exclusive and the ability to affect the agent 



behaviour. In the DR agent program, the only two such plans are the robot’s plan to 
get beer when the fridge is empty (p1) and the robot’s plan to get beer when the own-
er exceeds the limit of drinking (p2). Therefore, we need a test on which the owner 
just exceeds the limit of drinking when there is no beer in the fridge. This test will 
cause p2 to execute twice under the mutant so that the robot will advise the owner 
twice about having exceeded the drinking limit. We also need to improve the test pass 
criteria to capture the number of advices given by the robot. 

In order to kill the non-equivalent mutant that BQO leads to, we need to capture 
the differences in the resultant agent behaviour between querying beliefs in linear 
order and in random order. In the BW agent program, there is only one place that 
causes the belief order or belief query order to matter, namely the context of the plan 
(p) which is to remove a block from the top of a stack in order to further move a block 
(b) in the same stack. It is worth noting that b can belong to more than one stack held 
by the belief base, for instance, there are two stacks, namely S(b1, b2, b) and S(b2, b), 
where the former contains the latter. In order to move b, b1 has to be removed first.  

Under the original interpretation where beliefs are queried in linear order, the con-
text of p always returns S(b1, b2, b) so that b1 can be removed. This is because the 
larger the stack is, the more recently it is added to the start of the belief base, as the 
result of the application of the belief revision rule to derive stacks. In contrast, under 
the mutant that BQO leads to, the context of p is likely to return S(b2, b), which caus-
es p to retry until S(b1, b2, b) is returned because b2 cannot be removed before b1. 
Therefore, we need to improve the tests or test pass criteria in order to capture the 
retrying of p. 

5.2! Assessment of Robustness to Semantic Changes 

The equivalent mutants (E) indicate that the agent program is robust to the corre-
sponding semantic changes, while the killed or non-equivalent mutants (K or NE) 
indicate the weaknesses in robustness. In order for the DR agent program to be robust 
to the semantic change caused by RSO, we can improve the program by ensuring that 
there is only one applicable non-empty plan at most in every deliberation cycle. As 
mentioned in Section 5.1, there are only two non-empty plans (p1 and p2) which are 
likely to become applicable simultaneously in the same cycle, therefore, we can make 
their contexts mutually exclusive, e.g., by strengthening the context of p2. 

In order for the BW agent program to be robust to the semantic changes caused by 
BQO and BAP, we need to make the program’s behaviour independent of the order of 
beliefs or querying beliefs. As mentioned in Section 5.1, there is only one place that 
causes these orders to matter, namely the context of p. Therefore, we can strengthen 
this context by ensuring that it always returns the largest stack. 

As for the semantic changes caused by ISO2 and TGAS, we find it very expensive 
hence inappropriate to make the agent program be robust to these changes. 



5.3! Assessment of Reliability of Semantic Changes 

We have improved the DR agent program to resist the semantic change caused by 
RSO and the BW agent program to resist the semantic changes caused by BQO and 
BAP, as suggested in Section 5.2. Therefore, RSO, BQO and BAP lead to reliable 
alternative interpretations of the corresponding agent program as well as the equiva-
lent mutants as shown in Table 11. To further assess the execution efficiency that 
these reliable alternative interpretations lead to, we make smsJason be able to com-
pare the test execution time under the original interpretation and under each reliable 
alternative interpretation. We present the results of execution efficiency assessment in 
Table 12.  

Table 12. Results of execution efficiency assessment 

SMOP 

Domestic Robot Blocks World 

Percentage of 
Avg Saved Time 

Percentage of Tests 
that Saved Time 

Percentage of 
Avg Saved Time 

Percentage of Tests 
that Saved Time 

RSO -0.06% 45.63% -0.33% 41.25% 
ISO 7.5% 100% 28.42% 100% 

ISO2 N/A 
N/A 

-0.72% 37.5% 
BQO 0.49% 53.75% 0.16% 63.75% 
BAP -0.34% 38.75% -0.15% 41.25% 

BRAS N/A 
N/A 

N/A 
N/A BDAS -0.01% 43.75% N/A 
N/A GAP 0.23% 50.63% 0.19% 51.25% 

DDAS N/A 
N/A 

N/A 
N/A TGAS N/A 

N/A 
N/A 
N/A TRO 0.33% 45.63% 0.08% 50% 

QC 0.13% 43.13% 0.27% 46.25% 
 

In Table 12, the inapplicable or unreliable mutants are marked as “N/A”. Among 
the reliable mutants, the one caused by ISO is interesting because it significantly re-
duces the average execution time of DR and BW by 7.5 and 28.42 percent respective-
ly, and it leads to efficiency improvement on all tests.  

The changes in efficiency that are caused by other reliable mutants are not signifi-
cant hence may be just caused by normal floating of execution time. 

6! Related Work and Conclusions 

In Section 2 we compared SMT to traditional mutation testing. Here we compare 
them in terms of multi-agent systems, by two examples showing that the semantic 
mutation operators for GOAL as shown in Table 8(b) can simulate some faults that 
cannot be captured by the traditional mutation operators for GOAL which are derived 
by Savarimuthu and Winikoff [18]. 

The RSO semantic mutation operator for GOAL can change the action rule selec-
tion order from “linear” to “linearall”, which is similar to the change from else-if to if. 



We examine the traditional mutation operators for GOAL and find no operators that 
can simulate this semantic change. For instance, these traditional mutation operators 
can delete or swap an element, however, deleting a single plan or swapping two plans 
cannot simulate this semantic change. 

The BQO semantic mutation operator changes the belief query order from “ran-
dom” to “linear”. Again we cannot find any traditional mutation operator for GOAL 
that can simulate this semantic change. 

In this paper, we applied SMT to Jason, GOAL and 2APL. We showed that SMT 
for these languages is useful in several contexts, namely use of a new language, evo-
lution of languages, common misunderstandings, ambiguity of informal semantics 
and customization of the interpreter. We derived sets of semantic mutation operators 
for these languages, and proposed a systematic approach to derivation of semantic 
mutation operators for rule-based agent languages. Finally, we used two Jason pro-
jects in a preliminary evaluation of the semantic mutation operators for Jason. The 
results suggest that SMT has some potential to assess tests, robustness to and reliabil-
ity of semantic changes. 

Our future work will focus on further evaluation of the semantic mutation opera-
tors for Jason. To further evaluate the ability of these operators to assess tests, we will 
examine their representativeness by comparing to realistic semantic misunderstand-
ings and their power by looking for more hard-to-kill mutants (as we have done in this 
paper), as suggested by [10]. To further evaluate the ability of these operators to as-
sess robustness to and reliability of semantic changes, we will apply them to more 
Jason projects so as to provide more suggestions on improving program robustness 
and optimizing interpreter. 
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