
Semantic Mutation Testing for Multi-Agent Systems

Zhan Huang and Rob Alexander

Department of Computer Science, University of York, York, United Kingdom
{zhan.huang,robert.alexander}@cs.york.ac.uk

Abstract. This paper introduces semantic mutation testing (SMT) into multi-
agent systems. SMT is a test assessment technique that makes changes to the in-
terpretation of a program and then examines whether a given test set has the
ability to detect each change to the original interpretation. These changes repre-
sent possible misunderstandings of how the program is interpreted. SMT can al-
so be used to assess robustness to and reliability of semantic changes. This pa-
per applies SMT to three rule-based agent programming languages, namely Ja-
son, GOAL and 2APL, provides several contexts in which SMT for these lan-
guages is useful, and proposes three sets of semantic mutation operators (i.e.,
rules to make semantic changes) for these languages respectively, and a sys-
tematic approach to derivation of semantic mutation operators for rule-based
agent languages. This paper then shows, through preliminary evaluation of our
semantic mutation operators for Jason, that SMT has some potential to assess
tests, robustness to and reliability of semantic changes.

Keywords: Semantic Mutation Testing, Agent Programming Languages, Cog-
nitive Agents

1! Introduction

Testing multi-agent systems (MASs) is difficult because MASs may have some prop-
erties such as autonomy and non-determinism, and they may be based on models such
as BDI which are quite different to ordinary imperative programming. There are many
test techniques for MASs, most of which attempt to address these difficulties by
adapting existing test techniques to the properties and models of MASs [9, 15]. For
instance, SUnit is a unit-testing framework for MASs that extends JUnit [19].

Some test techniques for MASs introduce traditional mutation testing, which is a
powerful technique for assessing the adequacy of test sets. In a nutshell, traditional
mutation testing makes small changes to a program and then examines whether a
given test set has the ability to detect each change to the original program. These
changes represent potential small slips. Work on traditional mutation testing for
MASs includes [1, 10, 16–18].

In this paper, we apply an alternative approach to mutation testing, namely seman-
tic mutation testing (SMT) [5], to MASs. Rather than changing the program, SMT
changes the semantics of the language in which the program is written. In other
words, it makes changes to the interpretation of the program. These changes represent

possible misunderstandings of how the program is interpreted. Therefore, SMT as-
sesses a test set by examining whether it has the ability to detect each change to the
original interpretation of the program.

SMT can be used not only to assess tests, but also to assess robustness to and relia-
bility of semantic changes: Given a program, if a change to its interpretation cannot
be detected by a trusted test set, the program is considered to be robust to this change,
in other words, this change is considered to be reliable for the program.

This paper makes several contributions. First, it applies SMT to three rule-based
agent programming languages, namely Jason, GOAL and 2APL. Second, it provides
several contexts (scenarios) in which SMT for these languages is useful. Third, it
proposes three sets of semantic mutation operators (i.e., rules to make semantic
changes) for these languages respectively, and a systematic approach to derivation of
semantic mutation operators for rule-based agent languages. Finally, it presents a
preliminary evaluation of the semantic mutation operators for Jason, which shows
some potential of SMT to assess tests, robustness to and reliability of semantic chang-
es.

The remainder of this paper is structured as follows: Section 2 describes two types
of mutation testing, namely traditional mutation testing and semantic mutation testing.
Section 3 describes SMT for Jason, GOAL and 2APL by showing several contexts in
which it is useful and the source of semantic changes required to apply SMT in each
context. Section 4 proposes sets of semantic mutation operators for these languages
and an approach to derivation of semantic mutation operators for rule-based agent
languages. Section 5 evaluates the semantic mutation operators for Jason. Section 6
compares our approach to related work, summarizes our work and suggests where this
work could go in the future.

2! Mutation Testing

2.1! Traditional Mutation Testing

Traditional mutation testing is a test assessment technique that generates modified
versions of a program and then examines whether a given test set has the ability to
detect the modifications to the original program. Each modified program is called a
mutant, which represents a potential small slip. Mutant generation is guided by a set
of rules called mutation operators. For instance, Figure 1(a) shows a piece of a pro-
gram and Figure 1(b) – 1(f) show five mutants generated as the result of the applica-
tion of a single mutation operator called Relational Operator Replacement, which
replaces one of the relational operators (<, ≤, >, ≥, =, ≠) by one of the others.

After mutant generation, the original program and each mutant are executed
against all tests in the test set. For a mutant, if its resultant behaviour differs from the
behaviour of the original program on some test, the mutant will be marked as killed,
which indicates that the corresponding modification can be detected by the test set.
Therefore, the fault detection ability of the test set can be assessed by the mutant kill
rate – the ratio of the killed mutants to all generated mutants: the higher the ratio is,
the more adequate the test set is. In the example shown in Figure 1, a test set consist-

ing of a single test in which the input is x=3, y=5 cannot kill the mutants shown in
Figure 1(b) and 1(f) because on that test these two live mutants result in the same
behaviour as the original program (i.e., return a). Therefore, the mutant kill rate is
3/5. According to this result we can enhance the test set by adding a test in which the
input is x=4, y=4 and another test in which the input is x=4, y=3 in order to kill these
two live mutants respectively and get a higher mutant kill rate (the highest kill rate is
1, as this example shows).

Fig. 1. An example of traditional mutation testing

Many studies provide evidence that traditional mutation testing is a very rigorous
test assessment technique, so it is often used to assess other test techniques [2, 14].
However, the mutation operators used to guide mutant generation may lead to a large
number of mutants because a single mutation operator has to be applied to each rele-
vant point in the program and a single mutant only contains a modification to a single
relevant point (as shown in Figure 1). This makes comparing the behaviour of the
original program with that of each mutant on each test is computationally expensive.

Another problem is that traditional mutation testing unpredictably produces
equivalent mutants – alternatives to the original program that are not representative of
faulty versions, in that their behaviour is no different from the original in any way that
matters for the correctness of the program. Thus, no reasonable test set can detect the
modifications they contain. Equivalent mutants must therefore be excluded from test
assessment (i.e., the calculation of the mutant kill rate). The exclusion of equivalent
mutants requires much manual work although this process may be partially automat-
ed.

2.2! Semantic Mutation Testing

Clark et al. [5] propose semantic mutation testing (SMT) and extend the definition of
mutation testing as follows: suppose N represents a program and L represents the
semantics of the language in which the program is written (so L determines how N is

interpreted), the pair (N, L) determines the program’s behaviour. Traditional mutation
testing generates modified versions of the program namely N ! (N1, N2, …, Nk)
while SMT generates different interpretations of the same program namely L ! (L1,
L2, …, Lk). For SMT, L1, L2, …, Lk represent semantic mutants, their generation is
guided by a set of rules called semantic mutation operators. For instance, Figure 2
shows a piece of a program, a semantic mutant (i.e., a different interpretation of this
program) is generated by the application of a single semantic mutation operator that
causes the if keyword to be used for mutual exclusion (i.e., when an if is directly fol-
lowed by another if, the second if statement is interpreted the same as an else-if state-
ment).

Fig. 2. An example of semantic mutation testing

SMT assesses a test set in a similar way as traditional mutation testing – comparing
the behaviour under each semantic mutant with that under the original interpretation,
in order to detect the killed mutants. In the example shown in Figure 2, a test set con-
sisting of a single test in which the input is x=2 cannot kill the semantic mutant be-
cause on that test the mutant results in the same behavior as the original interpretation
(i.e., only do A). Therefore, the mutant kill rate is 0/1 = 0. We can enhance this test set
by adding another test in which the input is x=4 in order to kill the live mutant.

Compared with traditional mutation testing, SMT aims to simulate a different class
of faults, namely possible misunderstandings of how the program is interpreted. Alt-
hough many semantic misunderstandings can also be simulated by mutation of the
program, a single semantic change may require multiple changes to the program ra-
ther than a single, small change made by traditional mutation testing. In addition,
some semantic misunderstandings may lead to complex faults that simple program
changes are hard to represent, and these complex faults may be harder to detect than
small slips, e.g., [5] shows that SMT has potential to capture some faults that cannot
be captured by traditional mutation testing.

SMT has another difference to traditional mutation testing: it generates far fewer
mutants because a single semantic mutation operator only leads to a single semantic
mutant1, namely a different interpretation of the same program (as shown in Figure 2),
while a single traditional mutation operator may lead to many mutants each of which
contains a modification to a single relevant point in the program (as shown in Figure
1). This makes SMT much less computationally costly.

1 This rule can be relaxed, namely mutating the semantics of only parts of the program instead

of mutating the semantics of the whole program. This is useful, e.g., when the program is
developed by several people.

SMT can be used not only to assess tests, but also to assess robustness to and relia-
bility of semantic changes. Given a semantic mutant, if it cannot be killed by a trusted
test set2, it will be considered to be “equivalent”3, which indicates that the program is
robust to the corresponding semantic change or the semantic change is reliable for the
program, otherwise the program may need to be improved to resist this change, or this
change has to be discarded. In the example shown in Figure 2, if the program is re-
quired to be robust to the semantic change, it can be modified to ensure that at most
one branch is executed in any case.

We know that SMT makes semantic changes for assessing tests, robustness to and
reliability of semantic changes. For a particular language, which semantic changes
should be made by SMT are context-dependent. For instance, to assess tests for a
program written by a novice programmer, semantic changes to be made can be de-
rived from common novices’ misunderstandings of the semantics. To assess the port-
ability of a program between different versions of the interpreter, semantic changes to
be made can be derived from semantic differences between these versions.

3! Semantic Mutation Testing for Jason, GOAL and 2APL

We investigate semantic mutation testing for MASs by applying it to three rule-based
programming languages for cognitive agents, namely Jason, GOAL and 2APL. These
languages have generally similar semantics – an agent deliberates in a cyclic process
in which it selects and executes rules according to and affecting its mental states.
They also have similar constructs to implement such agents such as beliefs, goals and
rules. The details of these languages can be found in [4, 6, 8] and are not provided
here.

From Section 2.2 we know that for a particular language, the semantic changes that
can most usefully be made by SMT is context-dependent. In the remainder of this
section we provide several contexts in which SMT for the chosen agent languages is
useful – use of a new language, evolution of languages, common misunderstandings,
ambiguity of informal semantics and customization of the interpreter. We also show
the source of semantic changes required to apply SMT in each context.

3.1! Use of a new language

When a programmer starts to write a program in a new (to him or her) language, he or
she may have misunderstandings that come from the semantic differences between the
new language and the old one(s) he or she has ever used. Therefore, in order for SMT

2 A trusted test set is the one that is considered to be “good enough” for the requirement. It

doesn’t need to be the full test set that is usually impractical; instead it can choose not to
cover some aspects or to tolerate some errors.

3 Here the term “equivalent” is different to the one used in the context of test assessment, in
which a mutant is equivalent only if there exist no tests that can kill the mutant. In the con-
text of robustness/reliability assessment, a mutant is equivalent if only the trusted test set
cannot kill it.

to simulate such misunderstandings, we should first find out their source, namely the
semantic differences, by comparison between the new and the old languages. We use
Jason, GOAL and 2APL as an example: a programmer who has ever used one of the-
se languages may start to use one of the others. Since these languages each have large
semantic size and distinctive features, we use the following strategies to guide the
derivation of the semantic differences between them.

•! Dividing the semantics of each of these languages into five aspects, as shown in
Table 1. We do this because first of all, it provides a focus on examining four as-
pects of the semantics, namely deliberation step order, rule selection, rule execu-
tion, and mental state query and update, all of which are important and common to
rule-based agent languages, while including other aspects that will be generally ex-
amined in order for completeness. Second, it is reasonable that common aspects of
the semantics are more likely to cause misunderstandings than distinctive aspects
in the context of using a new language, because distinctive aspects are usually sup-
ported by distinctive constructs that a programmer would normally take time to
learn.

•! Focusing on semantic differences between similar constructs. As [5] suggests, such
differences easily cause misunderstandings because when writing a program in a
new language a programmer may copy the same or similar old constructs without
careful examination of their semantics given by the new language.

•! Examining both formal and informal semantics of these languages. We start with
examining the formal semantics because they can be directly compared. We also
verify those that are informally defined through coding and reviewing the inter-
preter source code.

•! Focusing on the default interpreter configuration. The interpreters of these lan-
guages are customizable, for instance, the Jason agent architecture can be custom-
ized by inheritance of the Java class that implements the default agent architecture;
the GOAL rule selection order can be customized in the GOAL agent description.
We think the default interpreter configuration is more likely to cause misunder-
standings in the context of using a new language because if a programmer custom-
izes an element it suggests he or she is familiar with its semantics.

Table 1. The aspects of the semantics of Jason, GOAL and 2APL (those marked with an aster-
isk are the ones we focus on)

ID Aspect Description

1 Deliberation step
order*

Each deliberation cycle consists of a sequence of steps, e.g.,
rule selection ! rule execution is a two-step sub-sequence.

2 Rule selection* Rule selection is an important deliberation step in which one
or several rules are chosen to be new execution candidates.

3 Rule execution* Rule execution is an important deliberation step in which one
or several execution candidates are chosen to execute.

4 Mental state query
and update*

Mental states (i.e., beliefs and goals) can be queried in some
deliberation steps such as rule selection and updated by exe-
cution of rules.

5 Other Other aspects of the semantics not listed above.

Table 2 shows the semantic differences we found between Jason, GOAL and

2APL. These form the source of semantic changes required to apply SMT in the con-
text of starting to use one of Jason, GOAL and 2APL from one of the others.

Table 2. Semantic differences between Jason, GOAL and 2APL

ID Source Jason GOAL 2APL

1 The order of
rule selection
and rule
execution

select a rule ! execute
a rule

(select and execute event
rules ! select and
execute an action rule) x
Number_of_Modules

select action rules !
execute rules ! select
an external event rule
! select an internal
event rules ! select a
message event rule

2 Rule
selection

•! applicable

•! linear

•! enabled

•! linear (action rules)
and linearall (event
rules)

•! applicable

•! linear (event rules)
and linearall (action
rules)

3 Rule
execution

•! one rule/cycle

•! one action/rule

•! one rule/cycle (ac-
tion rules) and all
rules/cycle (event
rules)

•! all actions/rule

•! all rules/cycle

•! one action/rule

4 Belief query linear random linear
5 Belief

addition
start end end

6 Goal query E ! I; linear random linear
7 Goal

addition
end of E end start or end

8 Goal
deletion

delete the event and
intention that relates to
the goal φ

delete all super-goals of
the goal φ

delete only the goal φ,
all sub-goals of φ or all
super-goals of φ

9 Goal type procedural declarative declarative
10 Goal

commitment
strategy

no blind blind

Difference 1 comes from the order of two important deliberation steps, namely rule

selection and rule execution. A Jason agent first selects a rule to be a new execution
candidate and then chooses to execute an execution candidate. A GOAL agent pro-
cesses its modules one by one, in each module it first selects and executes event rules
and then selects and executes an action rule (both event and action rules are defined in
the module being processed). A 2APL agent first selects action rules to be new execu-
tion candidates, and then executes all execution candidates, next selects an external
event rule, an internal event rule and a message event rule to be new execution candi-
dates.

Difference 2 comes from the rule selection deliberation step. Jason, GOAL and
2APL differ in two aspects of this step, namely the rule selection condition and the

default rule selection order. For the rule selection condition, a Jason or 2APL rule can
be selected to be a new execution candidate if both its trigger condition and guard
condition get satisfied (“applicable”), while a GOAL rule can be selected if it is appli-
cable and the pre-condition of its first action gets satisfied (“enabled”). For the default
rule selection order, Jason rules are selected in linear order (i.e., rules are examined in
the order they appear in the agent description, and the first applicable rule is selected),
GOAL action rules are selected in linear order while GOAL event rules are selected
in “linearall” order (i.e., rules are examined in the order they appear in the agent de-
scription, and all enabled rules are selected), 2APL action rules are selected in “lin-
earall” order while 2APL event rules of each type (external, internal, message) are
selected in linear order.

Difference 3 comes from the rule execution deliberation step. In this step a Jason
agent chooses a single execution candidate and then executes a single action in this
candidate, a GOAL agent executes all actions in each selected event rule and each
selected action rule4, a 2APL agent executes a single action in each execution candi-
date.

Difference 4 comes from the belief query. In a Jason or 2APL agent, beliefs are
queried in linear order (i.e., beliefs are examined in the order they are stored in the
belief base, and the first matched belief is returned). In a GOAL agent, beliefs are
queried in random order (i.e., beliefs are randomly accessed, and the first matched
belief is returned).

Difference 5 comes from the belief addition. In a Jason agent, a new belief is added
to the start of the belief base. In a GOAL or 2APL agent a new belief is added to the
end of the belief base.

Difference 6 comes from the goal query. In a Jason agent, since goals exist in re-
lated events and intentions, the agent queries a goal by first examining its event base
then its intention set following linear query order. In a GOAL agent, goals are queried
in random order. In a 2APL agent, goals are queried in linear order.

Difference 7 comes from the goal addition. In a Jason or GOAL agent, a new goal
is added to the end of the event or goal base. In a 2APL agent, a new goal is added to
the start or the end of the goal base according to the relevant agent description (i.e.,
adopta or adoptz).

Difference 8 comes from the goal deletion. Given a goal φ to be deleted, a Jason
agent deletes the event and intention that relates to φ, a GOAL agent deletes all goals
that have φ as a logical sub-goal, a 2APL agent deletes only φ, all goals that are a
logical sub-goal of φ, or all goals that have φ as a logical sub-goal according to the
relevant agent description (i.e., dropgoal, dropsubgoal or dropsupergoal).

Difference 9 comes from the goal type. Jason adopts procedural goals – goals that
only serve as triggers of procedures although it supports declarative goal patterns.
GOAL and 2APL adopt declarative goals – goals that also represent states of affairs
to achieve.

4 Unlike Jason and 2APL, a GOAL agent has no intention set or similar structure, so a GOAL

rule is immediately attempted to execute to completion once selected.

Difference 10 comes from the goal commitment strategy. Jason doesn’t adopt any
goal commitment strategy (i.e., a goal is just dropped once its associated intention is
removed as the result of completion or failure) although it supports various commit-
ment strategy patterns. GOAL and 2APL adopt blind goal commitment strategy,
which requires a goal is pursued until it is achieved or declaratively dropped.

3.2! Evolution of Languages

When a programmer moves a program from a language to its successor (either a dif-
ferent language or a newer version of the same language), he or she may have misun-
derstandings that come from the semantic evolution, or may want to examine whether
a program is robust to the semantic evolution or whether the semantic evolution is
reliable. To derive semantic changes required to apply SMT in these cases, we should
first find out their source, namely the semantic differences between the language and
its successor. We take 2APL and its predecessor 3APL [7], and different versions of
Jason as examples: Table 3 shows some semantic differences between 2APL and
3APL; Table 4 shows some semantic differences between different versions of Jason,
which are derived from the Jason changelog [11]. We explain these differences as
follows.

Semantic differences between 2APL and 3APL

Difference 1 comes from the PR-rules. In 2APL, the abbreviation “PR” means
“plan repair”, a PR-rule (i.e. an internal event rule) is selected if a relevant plan fails.
In 3APL, “PR” means “plan revision”, a PR-rule is selected if it matches some plan.

Difference 2 comes from the order of rule selection and rule execution deliberation
steps. The order adopted by a 2APL agent has been described in Section 3.1. In con-
trast, a 3APL agent selects an action rule then a PR-rule to be new execution candi-
dates, then chooses to execute an execution candidate.

Difference 3 comes from the action rule selection order. As described in Section
3.1, 2APL action rules are selected in “linearall” order. In contrast, 3APL action rules
are selected in linear order.

Difference 4 comes from the rule execution deliberation step. As described in Sec-
tion 3.1, a 2APL agent executes all execution candidates in a deliberation cycle. In
contrast, a 3APL agent chooses to execute a single execution candidate.

Table 3. Some semantics differences between 2APL and 3APL

ID Source 2APL 3APL
1 PR-rules plan repair plan revision

2 The order of rule selection
and rule execution see Table 2 select an action rule ! select a

PR-rule ! execute a rule
3 Action rule selection linearall linear
4 Rule execution all rules/cycle one rule/cycle

Semantic differences between different versions of Jason

Difference 1 comes from the belief deletion action. Since Jason v0.95 the belief de-
letion action -b deletes b if b is a mental note (i.e. b has the annotation source(self)),
while this action deletes b wherever it originates from before that version of Jason.

Difference 2 comes from the drop desire action. Since Jason v0.96 the drop desire
action .drop_desire(d) removes the event and intention that is related to d, while this
action removes only the related event before that version of Jason.

Table 4. Some semantic differences between different versions of Jason

ID Source Before some Version Since that Version

1 Belief deletion action -b deletes b wherever it originates
from.

-b deletes b if b has the annota-
tion source(self).

2 Drop desire action Remove only the related event. Remove the related event and
intention.

3.3! Common Misunderstandings

A programmer may have semantic misunderstandings that are common to a particular
group of people he or she belongs to. Such misunderstandings can be identified by
analysis of these people’s common mistakes or faults. We take GOAL as an example:
Table 5 shows some possible misunderstandings of the GOAL’s semantics, which are
derived from some common faults made by GOAL novice programmers [20]. We
explain these misunderstandings as follows.

Possible misunderstanding 1 comes from the fault of the wrong rule order. If a
programmer makes this fault in the GOAL agent description, he or she may have the
misunderstanding that rules are selected in another available order5 by default, e.g.,
action rules are selected in “linearall” order rather than linear order.

Possible misunderstanding 2 comes from the fault of a single rule including two
user-defined actions. If a programmer makes this fault, he or she may have the mis-
understanding that this is allowed like other agent languages.

Possible misunderstanding 3 comes from the fault of using “if then” instead of
“forall do”. If a programmer makes this fault, he or she may have the misunderstand-
ing that “if then” is interpreted the same as “forall do”.

Table 5. Some possible novice programmers' misunderstandings of GOAL

ID Fault Possible Misunderstanding
1 Wrong rule order By default rules are selected in another available order.

2 A single rule including two
user-defined actions A rule can have more than one user-defined action.

3 Using “if then” instead of
“forall do” “if then” is interpreted the same as “forall do”.

5 GOAL supports four available rule evaluation orders: linear, linearall, random and ran-

domall.

3.4! Ambiguity of Informal Semantics

A programmer may have misunderstandings of the semantics that are imprecisely or
informally defined. For instance, [3] gives two examples of such misunderstandings
of Jason as shown in Table 6. We explain these misunderstandings as follows.

Possible misunderstanding 1 comes from the goal deletion event. A goal deletion
event (-!e or -?e) is generated if an intention that has the corresponding goal addition
triggering event (+!e or +?e) fails. A programmer may have the misunderstanding
that this event is generated if this intention is removed as the result of completion or
failure.

Possible misunderstanding 2 comes from the test action. A test action (?e) gener-
ates a test goal addition event if it fails. A programmer may have the misunderstand-
ing that a test action generates a test goal addition event if it is executed, which is
similar to an achievement goal action (!e).

Table 6. Some possible misunderstanding of the Jason’s informal semantics

ID Source Possible Misunderstanding
1 Goal deletion event “if an intention fails” ! “if an intention is removed”

2 Test action Generate a test goal addition event if the action fails ! Generate a
test goal addition event if the action is executed

3.5! Customization of the Interpreter

The interpreters of Jason, GOAL and 2APL can be customized through modify-
ing/overriding the functions of the interpreter or choosing between the provided op-
tions that can change the interpreter behaviour. Given an agent description, a pro-
grammer may want to know whether a custom interpreter provides an alternative to
the original interpretation of the description. (The programmer may further examine
whether the alternative interpretation leads to better performance, e.g., higher execu-
tion efficiency.) SMT can be applied in this context to represent potential customiza-
tions of the interpreter. We take Jason as an example: Table 7 shows some Jason in-
terpreter configuration options, which are derived from the Jason changelog [11].

Table 7. Some Jason interpreter configuration options

ID Option Description
1 Enable/disable tail recursion optimization for sub-goals.
2 Enable/disable cache for queries in the same cycle.

3 Choose whether the event generated by the belief revision action will be treated as internal or
external.

3.6! Discussion

SMT is interesting to Jason, GOAL and 2APL in the contexts discussed above con-
sidering:

•! These languages are declarative languages. They provide a focus on describing
capabilities and responsibilities of an agent in terms of beliefs, goals, plans, etc.,
while encapsulating in the interpreter how an agent goes about fulfilling the re-
sponsibilities using the available capabilities. As a result, programmers are likely
to pay insufficient attention to how an agent works, and therefore have relevant
misunderstandings.

•! These languages have customizable semantics. Since the semantics affects the
agent behaviour and performance as well as the agent program, it is useful to ex-
plore different customizations of the semantics.

4! Semantic Mutation Operators for Jason, GOAL and 2APL

According to our derived sources of semantic changes required to apply SMT in dif-
ferent contexts, we derive three respective sets of semantic mutation operators for
Jason, GOAL and 2APL as shown in Table 8(a) – 8(c). Due to space limitations we
don’t explain each semantic mutation operator in details.

It is worth noting that each operator set does not cover each context discussed in
Section 3, e.g., the operator set for Jason has no operators that are derived from com-
mon misunderstandings of Jason. Therefore, we will improve each set when we ac-
quire more sources of potential semantic changes to the corresponding language. In
Table 8 each operator is labeled with its context(s) from which it is derived, e.g., the
rule selection order change (RSO) operator for Jason is labeled with UNL (use of a
new language), which indicates that this operator is derived from and can be used in
(but is not limited to) the context of use of a new language discussed in Section 3.1.

Another noteworthy thing is that not every possible semantic change derived from
Table 2 – 7 develops into a (or part of a) semantic mutation operator because some of
them are considered to be unrealistic. Therefore, these unrealistic changes are adapted
or simply discarded. A semantic change is considered to be unrealistic if it satisfies
one of the following.
•! It requires a significant change in the interpreter. We think that a programmer is

not very likely to misunderstand the semantics a lot or to make such semantic
change.

•! It leads to the significantly different behaviour of each of our selected agent
programs written in the corresponding language (i.e., 6 Jason programs, 6
GOAL programs or 4 2APL programs). We think that this semantic change is
very easy to detect.

After analysis of these semantic mutation operators we find that most of them con-
cern three kinds of the interpreter behaviour, namely select, query and update6. The
elements to be selected include deliberation steps, rules, intentions, actions, etc; those
to be queried or updated include beliefs, goals, events, etc. We also find that most

6 We ever considered two more kinds of the interpreter behaviour, namely transit (between

deliberation steps) and execute (a rule or action). However, we find that these two kinds can
be classified as select, namely select between deliberation steps and select a rule or action to
execute. This simplifies our classification.

operators change certain aspects of the interpreter behaviour, i.e., order, quantity,
position and condition7. Table 9(a) and 9(b) list the kinds of the interpreter behaviour
and the changeable aspects respectively (other kinds and aspects not mentioned above
are included in order for completeness). Therefore, we propose a systematic approach
to derivation of semantic mutation operators for rule-based agent languages, namely
application of a changeable aspect into a kind of the interpreter behaviour. In Table 8
each semantic mutation operator is labeled with the kind of the interpreter behaviour
it concerns and the aspect it changes, both of which are identified by their IDs shown
in Table 9 (i.e., KID and AID respectively).

Abbreviations for the contexts discussed in Section 3

Use of a New Language: UNL Evolution of Languages: EL
Common Misunderstandings: CM Ambiguity of Informal Semantics: AIS
Customization of Interpreter: CI

Table 8(a). Semantic mutation operators for Jason

ID Semantic Mutation Operator Description Context KID AID
1 Rule selection order change (RSO) linear ! linearall UNL 1 1
2 Intention selection order change

(ISO)
one intention/cycle ! all
intentions/cycle

UNL 1 1

3 Intention selection order change 2
(ISO2)

interleaved selection of
intentions ! non-interleaved
selection of intentions

UNL 1 1

4 Belief query order change (BQO) linear ! random UNL 2 1
5 Belief addition position change

(BAP)
start ! end UNL 3 3

6 Belief revision action semantics
change (BRAS)

generate internal events !
generate external events8

CI 3 3

7 Belief deletion action semantics
change (BDAS)

-b deletes b if b has the
annotation source(self) ! -b
deletes b

EL 3 4

8 Goal addition position change
(GAP)

end ! start UNL 3 3

9 Drop desire action semantics
change (DDAS)

remove the related event and
intention ! remove only the
related event

EL 3 2

10 Test goal action semantics change
(TGAS)

generate a test goal addition
event if the action fails !
generate a test goal addition
event if the action is execut-
ed

AIS 3 4

11 TRO enable/disable (TRO) enable/disable tail recursion
optimization for sub-goals

CI 3 5

12 Query cache enable/disable (QC) enable/disable cache for
queries in the same cycle

CI 2 5

7 These changeable aspects may have overlaps, e.g., the change “select one rule ! select all

rules” can be a change to the order or the quantity.
8 The plan chosen for an internal event will be pushed on top of the intention from which the

event is generated; the plan chosen for an external event will become a new intention.

Table 8(b). Semantic mutation operators for GOAL

ID Semantic Mutation Operator Description Context KID AID

1 Rule selection and execution
order change (RSEO)

select and execute event
rules then an action rule !
select and execute an action
rule then event rules

UNL 1 1

2 Rule selection condition change
(RSC)

enabled ! applicable UNL 1 4

3 Rule selection order change
(RSO)

change between linear,
linearall, random and ran-
domall

UNL,
CM 1 1

4 Belief query order change (BQO) random ! linear UNL 2 1

5 Belief addition position change
(BAP)

end ! start UNL 3 3

6 Goal query order change (GQO) random ! linear UNL 2 1

7 Goal addition position change
(GAP)

end ! start UNL 3 3

8 Goal deletion semantics change
(GDS)

“delete φ’ if it is a super-
goal of φ” ! “delete φ’ if it
is φ” or “delete φ’ if it is a
sub-goal of φ”

UNL 3 4

9 The maximum number of user-
defined actions change (MNUA)

1 ! more than 1 CM 4 2

10 “if then” semantics change (ITS) make “if then” interpreted
the same as “forall do”

CM 2 2

Table 8(c). Semantic mutation operators for 2APL

ID Semantic Mutation Operator Description Context KID AID

1 Rule selection and rule execu-
tion order change (RSREO)

change the original order “se-
lect action rules ! execute
rules ! select event rules” to
“select action rules ! select
event rules ! execute rules” or
“select event rules ! select
action rules ! execute rules”

UNL,
EL 1 1

2 Rule selection condition change
(RSC)

applicable ! enabled UNL 1 4

3 Rule selection order change
(RSO)

change between linear and
linearall

UNL,
EL

1 1

4 Plan selection order change
(PSO)

all plans/cycle ! one
plan/cycle

UNL,
EL

1 1

5 Belief query order change
(BQO)

linear ! random UNL 2 1

6 Belief addition position change
(BAP)

end ! start UNL 3 3

7 Goal query order change (GQO) linear ! random UNL 2 1

8 PR-rule selection condition
change (PRSC)

select a PR-rule if the relevant
plan fails ! select a PR-rule if
it matches some plan

EL 1 4

Table 9. (a) Kinds of the interpreter behaviour
(b) Changeable aspects of the interpreter behaviour

(a)

KID Kind

1 Select

2 Query

3 Update

4 Other

(b)

AID Aspect

1 Order

2 Quantity

3 Position

4 Condition

5 Other

5! Evaluation of Semantic Mutation Operators for Jason

In order to assess the potential of SMT to assess tests, robustness to and reliability of
semantic changes, we develop a semantic mutation system for Jason called smsJason.
smsJason has three components, namely tests, semantic mutation operators, and con-
troller, which are explained as follows.

•! tests contains the following two custom parts for a particular Jason project:
o! A collection of tests. Each test is an array of values that can be used to instan-

tiate the parameterized agent/environment description. A random test genera-
tor is employed to generate random tests given the constraints of each param-
eter. In addition, each test will be assigned a lifetime at runtime. This lifetime
equals to the time taken by the Jason project under the original interpretation
to pass this test plus a specified generous tolerance value for this test9. The
Jason project under any mutant on this test will terminate anyhow when
reaching this lifetime, if the project does not terminate as the result of passing
this test yet.

o! Test pass criteria. The test pass criteria will be constantly examined at
runtime in order to judge whether the Jason project has passed the current
test. If the Jason project under the original interpretation is found to pass the
current test, it will terminate and the lifetime of the test will be derived; if the
project under any mutant is found to pass the current test before the lifetime
of the test, it will terminate and the mutant will be marked as “live”, other-
wise it will terminate when reaching this lifetime and the mutant will be
marked as “killed”.

•! semantic mutation operators implements our derived semantic mutation operators
for Jason as shown in Table 8(a). Each operator leads to a modified version of the
Jason interpreter (v1.4.1) which is pointed by a branch in Git [12] and can there-
fore be switched to another at runtime via Git API.

9 The tolerance value is added because the exact time taken by the Jason project varies over a

limited range in different runs. It is generous because the execution efficiency is not consid-
ered as part of the test pass criteria.

•! controller implements the process of semantic mutation testing as shown in the
following pseudo-code. JRebel [13], a powerful class reload technique, is em-
ployed to deploy each test (namely each instance of the parameterized
agent/environment description) at runtime quickly.

1: On each test:
2: Run the Jason project under the original
 interpreter until it passes the test
3: Derive the lifetime of the test

4: Under each generated mutant:
5: On each test:
6: Run the Jason project until it passes the test
 or reaches the lifetime of the test
7: Mark the mutant as “live” or “killed”
8: Update the number of tests that killed the
 mutant if the test killed the mutant

9: Display the SMT result

We apply smsJason into two Jason projects released with the Jason interpreter,
namely Domestic Robot (DR) and Blocks World (BW). In DR, a robot constantly gets
beer from the fridge and then serves its owner the beer until the owner exceeds a cer-
tain limit of drinking. The robot will ask the supermarket to deliver beer when the
fridge is found empty. In BW, an agent restacks the blocks as required, by a series of
actions of carrying or putting down a single block. We specify tests and test pass cri-
teria for DR and BW as summarized in Table 10(a) – 10(b), after which we start the
semantic mutation testing for each project. We analyze the SMT results displayed by
smsJason and present the final results in Table 11.

Table 10(a). The tests and test pass criteria for the Domestic Robot

Parameter Constraints Test Pass Criteria
Drinking limit (Dl) Dl � [0, 16] All of the following must be satisfied.

1.! The robot is not carrying beer;
2.! The robot has advised the owner about

having exceeded the drinking limit;
3.! The robot has checked the current time as

requested by the owner;
4.! Dl + 1 = Ib + Db – Rb, where Db is the

beer delivered by the supermarket and Rb
is the remaining beer in the fridge.

Map size (S x S) S � [1, 16]

Initial beer in the fridge (Ib) Ib � [0, 16]

Initial position of the robot (Pr) Pr, Pf and Po
take the form of
(X, Y), where X,
Y �[0, S - 1]

Initial position of the fridge (Pf)

Initial position of the owner (Po)

Total number of tests: 160

Table 10(b). The tests and test pass criteria for the Blocks World

Parameter Constraints Test Pass Criteria
Original Stacks of Blocks (OS) OS or ES is a set of lists and a partition of

the set {“a”, “b”, “c”, “d”, “e”, “f”, “g”}
representing all blocks; 1 ≤ |OS|, |ES| ≤ 3

OS = ES

Expected Stacks of Blocks (ES)

Total number of tests: 80

Table 11. Results of semantic mutation testing

SMOP
Domestic Robot Blocks World

Percentage of Tests
that Kill the Mutant Mutant Type Percentage of Tests

that Kill the Mutant Mutant Type

RSO 0 NE 0 E
ISO 0 E 0 E

ISO2 100% K 0 E
BQO 0 E 0 NE
BAP 0 E 37.5% K

BRAS 0 N/A 0 N/A
BDAS 0 E 0 N/A
GAP 0 E 0 E

DDAS 0 N/A 0 N/A
TGAS 91.88% K 0 N/A
TRO 0 E 0 E
QC 0 E 0 E

smsJason identifies the killed mutants (K), and we further classify those live mu-

tants. First, by static analysis of the agent program we find that some live mutants are
inapplicable (N/A) because the program has no constructs concerning the mutated
semantics. For instance, the BW agent program has no actions of belief revision, be-
lief deletion, drop desire and test goal, hence BRAS, BDAS, DDAS and TGAS are
inapplicable to BW. Second, we attempt to identify equivalent mutants (E) among the
applicable mutants by static and dynamic analysis of the agent program. For instance,
we find that the DR or BW agent program has no constructs that cause the order of
goal related events to matter; we also verify this through observing in Jason’s mind
inspector the relevant changes in agents’ mental attitudes on all tests. Therefore, we
conclude that GAP probably leads to the equivalent mutant. If we find a mutant likely
to be not equivalent we will attempt to improve the tests or test pass criteria in order
to kill it and classify it as non-equivalent (NE).

5.1! Assessment of Tests

The non-equivalent mutants (NE) indicate the weaknesses in the tests or test pass
criteria. In order to kill such a mutant that RSO leads to, we need to capture the dif-
ferences in the resultant agent behaviour between selecting all applicable plans and
selecting only the first applicable plan. These plans must have the same triggering
event, the contexts that are not mutually exclusive and the ability to affect the agent

behaviour. In the DR agent program, the only two such plans are the robot’s plan to
get beer when the fridge is empty (p1) and the robot’s plan to get beer when the own-
er exceeds the limit of drinking (p2). Therefore, we need a test on which the owner
just exceeds the limit of drinking when there is no beer in the fridge. This test will
cause p2 to execute twice under the mutant so that the robot will advise the owner
twice about having exceeded the drinking limit. We also need to improve the test pass
criteria to capture the number of advices given by the robot.

In order to kill the non-equivalent mutant that BQO leads to, we need to capture
the differences in the resultant agent behaviour between querying beliefs in linear
order and in random order. In the BW agent program, there is only one place that
causes the belief order or belief query order to matter, namely the context of the plan
(p) which is to remove a block from the top of a stack in order to further move a block
(b) in the same stack. It is worth noting that b can belong to more than one stack held
by the belief base, for instance, there are two stacks, namely S(b1, b2, b) and S(b2, b),
where the former contains the latter. In order to move b, b1 has to be removed first.

Under the original interpretation where beliefs are queried in linear order, the con-
text of p always returns S(b1, b2, b) so that b1 can be removed. This is because the
larger the stack is, the more recently it is added to the start of the belief base, as the
result of the application of the belief revision rule to derive stacks. In contrast, under
the mutant that BQO leads to, the context of p is likely to return S(b2, b), which caus-
es p to retry until S(b1, b2, b) is returned because b2 cannot be removed before b1.
Therefore, we need to improve the tests or test pass criteria in order to capture the
retrying of p.

5.2! Assessment of Robustness to Semantic Changes

The equivalent mutants (E) indicate that the agent program is robust to the corre-
sponding semantic changes, while the killed or non-equivalent mutants (K or NE)
indicate the weaknesses in robustness. In order for the DR agent program to be robust
to the semantic change caused by RSO, we can improve the program by ensuring that
there is only one applicable non-empty plan at most in every deliberation cycle. As
mentioned in Section 5.1, there are only two non-empty plans (p1 and p2) which are
likely to become applicable simultaneously in the same cycle, therefore, we can make
their contexts mutually exclusive, e.g., by strengthening the context of p2.

In order for the BW agent program to be robust to the semantic changes caused by
BQO and BAP, we need to make the program’s behaviour independent of the order of
beliefs or querying beliefs. As mentioned in Section 5.1, there is only one place that
causes these orders to matter, namely the context of p. Therefore, we can strengthen
this context by ensuring that it always returns the largest stack.

As for the semantic changes caused by ISO2 and TGAS, we find it very expensive
hence inappropriate to make the agent program be robust to these changes.

5.3! Assessment of Reliability of Semantic Changes

We have improved the DR agent program to resist the semantic change caused by
RSO and the BW agent program to resist the semantic changes caused by BQO and
BAP, as suggested in Section 5.2. Therefore, RSO, BQO and BAP lead to reliable
alternative interpretations of the corresponding agent program as well as the equiva-
lent mutants as shown in Table 11. To further assess the execution efficiency that
these reliable alternative interpretations lead to, we make smsJason be able to com-
pare the test execution time under the original interpretation and under each reliable
alternative interpretation. We present the results of execution efficiency assessment in
Table 12.

Table 12. Results of execution efficiency assessment

SMOP

Domestic Robot Blocks World

Percentage of
Avg Saved Time

Percentage of Tests
that Saved Time

Percentage of
Avg Saved Time

Percentage of Tests
that Saved Time

RSO -0.06% 45.63% -0.33% 41.25%
ISO 7.5% 100% 28.42% 100%

ISO2 N/A
N/A

-0.72% 37.5%
BQO 0.49% 53.75% 0.16% 63.75%
BAP -0.34% 38.75% -0.15% 41.25%

BRAS N/A
N/A

N/A
N/A BDAS -0.01% 43.75% N/A
N/A GAP 0.23% 50.63% 0.19% 51.25%

DDAS N/A
N/A

N/A
N/A TGAS N/A

N/A
N/A
N/A TRO 0.33% 45.63% 0.08% 50%

QC 0.13% 43.13% 0.27% 46.25%

In Table 12, the inapplicable or unreliable mutants are marked as “N/A”. Among
the reliable mutants, the one caused by ISO is interesting because it significantly re-
duces the average execution time of DR and BW by 7.5 and 28.42 percent respective-
ly, and it leads to efficiency improvement on all tests.

The changes in efficiency that are caused by other reliable mutants are not signifi-
cant hence may be just caused by normal floating of execution time.

6! Related Work and Conclusions

In Section 2 we compared SMT to traditional mutation testing. Here we compare
them in terms of multi-agent systems, by two examples showing that the semantic
mutation operators for GOAL as shown in Table 8(b) can simulate some faults that
cannot be captured by the traditional mutation operators for GOAL which are derived
by Savarimuthu and Winikoff [18].

The RSO semantic mutation operator for GOAL can change the action rule selec-
tion order from “linear” to “linearall”, which is similar to the change from else-if to if.

We examine the traditional mutation operators for GOAL and find no operators that
can simulate this semantic change. For instance, these traditional mutation operators
can delete or swap an element, however, deleting a single plan or swapping two plans
cannot simulate this semantic change.

The BQO semantic mutation operator changes the belief query order from “ran-
dom” to “linear”. Again we cannot find any traditional mutation operator for GOAL
that can simulate this semantic change.

In this paper, we applied SMT to Jason, GOAL and 2APL. We showed that SMT
for these languages is useful in several contexts, namely use of a new language, evo-
lution of languages, common misunderstandings, ambiguity of informal semantics
and customization of the interpreter. We derived sets of semantic mutation operators
for these languages, and proposed a systematic approach to derivation of semantic
mutation operators for rule-based agent languages. Finally, we used two Jason pro-
jects in a preliminary evaluation of the semantic mutation operators for Jason. The
results suggest that SMT has some potential to assess tests, robustness to and reliabil-
ity of semantic changes.

Our future work will focus on further evaluation of the semantic mutation opera-
tors for Jason. To further evaluate the ability of these operators to assess tests, we will
examine their representativeness by comparing to realistic semantic misunderstand-
ings and their power by looking for more hard-to-kill mutants (as we have done in this
paper), as suggested by [10]. To further evaluate the ability of these operators to as-
sess robustness to and reliability of semantic changes, we will apply them to more
Jason projects so as to provide more suggestions on improving program robustness
and optimizing interpreter.

References

1.! Adra, S.F., McMinn, P.: Mutation operators for agent-based models. In: Proceedings of 5th
International Workshop on Mutation Analysis. IEEE Computer Society (2010)

2.! Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press
(2008)

3.! Bordini, R.H., Hübner, J.F.: Semantics for the Jason variant of AgentSpeak (plan failure
and some internal actions). In: Proceedings of ECAI’10, pp. 635–640 (2010)

4.! Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. John Wiley & Sons (2007)

5.! Clark, J.A., Dan, H., Hierons, R.M.: Semantic Mutation Testing. Science of Computer
Programming (2011)

6.! Dastani M.: 2APL: A practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3), 214–248 (2008)

7.! Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent systems in
3APL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-
Agent Programming: Languages, Platforms and Applications, pp. 39–67. Springer, Hei-
delberg (2005)

8.! Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini R.H., Dastani M., Dix
J., El Fallah Seghrouchni A. (eds.), Multi-agent programming: Languages, platforms and
applications, vol. 2, pp. 3–37. Springer, Heidelberg (2009)

9.! Houhamdi, Z.: Multi-agent system testing: A survey. International Journal of Advanced
Computer Science and Applications (IJACSA) 2(6), 135–141 (2011)

10.! Huang Z., Alexander R., Clark J.A.: Mutation Testing for Jason Agents. In: Dalpiaz F.,
Dix J., van Riemsdijk, M.B. (eds.) EMAS 2014. LNCS (LNAI), vol. 8758, pp. 309–327.
Springer, Heidelberg (2014)

11.! Jason changelog, http://sourceforge.net/p/jason/svn/HEAD/tree/trunk/release-notes.txt
12.! JGit documentation, https://eclipse.org/jgit/documentation/
13.! JRebel documentation, http://zeroturnaround.com/software/jrebel/learn/
14.! Mathur, A.P.: Foundations of Software Testing. Pearson (2008)
15.! Nguyen, C.D., Perini, A., Bernon, C., Pavón, J., Thangarajah, J.: Testing in multi-agent

systems. In: Gleizes, M.-P., Gomez-Sanz, J.J. (eds.) AOSE 2009. LNCS, vol. 6038, pp.
180–190. Springer, Heidelberg (2011)

16.! Saifan, A.A., Wahsheh, H.A.: Mutation operators for JADE mobile agent systems. In: Pro-
ceedings of the 3rd International Conference on Information and Communication Systems,
ICICS (2012)

17.! Savarimuthu, S., Winikoff, M.: Mutation operators for cognitive agent programs. In: Pro-
ceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2013), pp. 1137–1138 (2013)

18.! Savarimuthu, S., Winikoff, M.: Mutation Operators for the GOAL Agent Language. In:
Cossentino M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS
(LNAI), vol. 8245, pp. 255–273. Springer, Heidelberg (2013)

19.! Tiryaki A.M., Oztuna S., Dikenelli O., Erdur R.C.: Sunit: A unit testing framework for test
driven development of multi-agent systems. In: Agent-Oriented Software Engineering VII.
LNCS, vol. 4405, pp. 156–173. Springer, Heidelberg (2006)

20.! Winikoff M.: Novice programmers' faults & failures in GOAL programs. In: Proceedings
of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2014), pp. 301–308 (2014)

